Клиника экспериментальной терапии НИИ КО РОНЦ имени Н.Н. Блохина РАМН с Ветеринарной клиникой «Биоконтроль», Анестезиологическое ветеринарное общество – ВИТАР.
А.И. Гимельфарб, Д.А. Евдокимов, Д.А. Вдовина, Е.А. Корнюшенков

Агонисты альфа2-адренорецепторов (альфа2-адреномиметики, альфа2-агонисты) оказывают множество эффектов на организм, среди которых наиболее значимыми являются седация и анальгезия. Одним из первых препаратов группы альфа2-агонистов является клонидин, который до настоящего времени применяется в гуманной медицине в качестве гипотензивного средства. Ксилазин как гипотензивное средство не прижился в гуманной медицине в связи с выраженными седативными свойствами, но благодаря именно этим свойствам заработал большую популярность в ветеринарии. Тогда, в конце 1960-х г.г. механизм его действия был неизвестен, позже было выяснено, что он является специфическим агонистом альфа2-адренорецепторов. Несколько позже медицинские специалисты обратили внимание на новые свойства альфа2-агонистов и началось активное изучение этих препаратов у людей. В медицинской анестезиологии сейчас разрешен для использования только один препарат этой группы – дексмедетомидин, зато в ветеринарной анестезии сразу несколько препаратов группы альфа2-агонистов нашли самое широкое применение. Кроме ксилазина в ветеринарной медицине используются такие альфа2-агонисты как детомидин, медетомидин, дексмедетомидин и ромифидин. Медетомидин представляет собой смесь двух изомеров – левомедетомидина и дексмедетомидина, из которых только второй обладает активностью в отношении альфа2-адренорецепторов. Медетомидин и дексмедетомидин считаются наиболее перспективными препаратами и наиболее активно изучаются в настоящее время.

Основными эффектами альфа2-адреноагонистов являются анксиолизис, седация, симпатолизис и анальгезия. Альфа2-агонисты не являются анестетиками в прямом смысле этого слова и имеют ограниченное применение в качестве монокомпонента для анестезии и анальгезии, но их использование в комбинации с другими седативными препаратами, анальгетиками и анестетиками в ряде случаев повышает качество анестезии и существенно снижает потребность в последних. Альфа2-адренорецепторы находятся в различных частях организма как в ЦНС, так и за ее пределами. Они могут располагаться пресинаптически и постсинаптически, известны также внесинаптические альфа2-адренорецепторы. Естественным лигандом альфа2-адренорецепторов является норадреналин. Анксиолизис и седация связаны главным образом со стимуляцией постсинаптических альфа2-адренорецепторов голубого пятна (locus coeruleus) ствола головного мозга (Lemke, 2004). Анальгетический эффект опосредован в первую очередь активацией пресинаптических норадренэргических альфа2-рецепторов дорсальных рогов спинного мозга. Активация альфа2-адренорецепторов медуллярного вазомоторного центра приводит к снижению выброса норадреналина и снижению центральной симпатической активности, что проявляется урежением сердечного ритма и снижением кровяного давления (Mizobe and Maze, 1995). Различные альфа2-агонисты отличаются друг от друга главным образом по длительности действия, а также по специфичности и избирательности действия по отношению к альфа2-адренорецепторам. Так, относительная специфичность ксилазина к альфа2/альфа1-рецепторам равняется 160, в то время как специфичность клонидина, детомидина и дексмедетомидина – 220, 260 и 1620, соответственно (Virtanen, 1989). С другой стороны, у разных видов животных наблюдаются существенные различия в чувствительности к различным альфа2-агонистам. Так, например, крупный рогатый скот в 10 раз более чувствителен к ксилазину, по сравнению с лошадьми и собаками, но имеет такую же чувствительность к медетомидину как и собаки, и почти одинаковую или даже меньшую чувствительность к детомидину по сравнению с лошадьми. В то же время свиньи очень устойчивы к действию альфа2-агонистов (Adams, 2001). Возможно, что различная реакция у разных видов животных связана с особенностями экспрессии и функции различных подтипов альфа2-адренорецепторов, а также со специфичностью различных препаратов по отношению к альфа2 и к альфа1- адренорецепторам.

Анальгетическое действие альфа2-агонистов наиболее ярко проявляется при эпидуральном или субарахноидальном введении (Sabbe et al., 1994). При системном введении альфа2-агонисты также проявляют анальгетическую активность, но зачастую бывает трудно отличить истинную анальгезию от невозможности ответить на болевой стимул.

На сердечно-сосудистую систему альфа2-агонисты оказывают двухфазное действие, которое особенно ярко проявляется после болюсного введения препарата. Первая фаза характеризуется временным повышением артериального давления сразу после введения альфа2-агониста в результате вазоконстрикции и возрастания периферического сосудистого сопротивления, что связывают с активацией постсинаптических альфа2-адренорецепторов гладкомышечных клеток кровеносных сосудов. Повышение АД в свою очередь увеличивает активность барорецепторов, что вызывает рефлекторную вагусную брадикардию. Далее, по мере прохождения препарата через ГЭБ и развития центральных эффектов, наблюдается постепенное снижение артериального давления, хотя периферическое сосудистое сопротивление остается повышенным (Pypendop and Verstegen, 1998; Kuusela et al., 2000); брадикардия при этом сохраняется, что считается следствием симпатолизиса. Интересно, что по мере увеличения дозы медетомидина с 1 мкг/кг до 5 мкг/кг брадикардия становится более выраженной, а с увеличением дозы с 5 мкг/кг до 20 мкг/кг сердечный ритм почти не изменяется (Pypendop and Verstegen, 1998). Недавние исследования позволяют предположить, что и в начале действия центральные эффекты альфа2-агонистов могут вносить вклад в развитие брадикардии (Hankavaara, 2009).

Сердечный выброс на фоне действия альфа2-агонистов снижается вследствие снижения сократимости и замедления сердечного ритма. В одном исследовании у собак при снижении сократимости на 10 % и урежения сердечного ритма на 33% сердечный выброс снижался на 50 %, а при снижении сократимости на 20%, а ЧСС на 60% СВ снижался на 70% (Carter at al., 2010). Считается, что альфа2-агонисты не оказывают прямого отрицательного инотропного влияния на миокард, и снижение сократимости опосредовано симпатолизисом с одной стороны, и увеличением периферического сосудистого сопротивления с другой стороны. При инфузии малых доз альфа2-агонистов без вводного болюсного введения препарата перед началом инфузии двухфазность выражена в меньшей степени. Уже в начале инфузии у собак наблюдается постепенное урежение сердечного ритма и снижение сердечного выброса, которые продолжают снижаться по мере возрастания концентрации препарата в крови. Артериальное давление в начале инфузии возрастает незначительно или остается неизменным, после чего начинает постепенно снижаться, при этом периферическое сосудистое сопротивление продолжает увеличиваться и остается повышенным на протяжении всего периода инфузии (Carter at al., 2010). Это не согласуется с высказанным ранее предположением о том, что снижение давления связано с вазодилатацией, развивающейся во вторую фазу.

Повышенное периферическое сопротивление увеличивает постнагрузку на миокард и может усугубить регургитацию у животных с эндокардиозом митрального клапана (Pascoe, 2009). Кроме того у собак альфа2-адреноагонисты часто вызывают атриовентрикулярние блокады 1 и 2 степени (Haskins et al., 1986), также сообщалось о случаях желудочковой экстрасистолии (Moens and Fargetton, 1990). У кошек по данным Lamont et al. (2001), медетомидин приводит к снижению сократимости и сердечного выброса, и одновременному повышению периферического сосудистого сопротивления и центрального венозного давления; при этом артериальное давление, рН, напряжение кислорода и диоксида углерода не меняется. По мнению этих же авторов применение альфа2-агонистов может играть положительную роль у животных с гипертрофической кардиомиопатией и обструкцией выносящего тракта левого желудочка (Lamont et al., 2002).

Альфа2-агонисты могут вызывать депрессию дыхания, степень которой сильно варьирует и зависит как от дозы препарата, так и от одновременного применения других препаратов. В некоторых случаях гиповентиляция может стать выраженной. У собак после болюсного внутривенного введения медетомидина или дексмедетомидина может наблюдаться кратковременное апноэ и небольшой цианоз, что обычно не сопровождается выраженной гипоксемией (Kuusela et al., 2000). Введение кетамина собакам, предварительно получившим ксилазин может приводить к выраженной гиповентиляции и снижению рН артериальной крови на фоне дыхательного ацидоза (Haskins et al., 1986). Гипоксемия на фоне применения альфа2-агонистов является нередким осложнением у овец и особенно сильно проявляется при бысторм внутривенном введении препарата; также у этого вида животных нередки случаи развития отека легких при использовании альфа2-агонистов (Kästner, 2006).

Haskins et al. (1989), среди прочих эффектов альфа2-агонистов отмечают уменьшение мертвого пространства, снижение легочного сопротивления и увеличение дыхательного объема; однако транспорт О2 к тканям по данным этих авторов снижается. Benson et al. (1985), анализируя причины необъяснимой гибели собак после анестезии на основе ксилазина с кетамином предполагают, что снижение тканевой перфузии лежит в основе фатальных изменений.

К прочим побочным эффектам альфа-2-адреноагонистов относятся: гипергликемия, гипотермия, рвота, полиурия, снижение моторной и секреторной функции ЖКТ, уменьшение саливации, снижение внутриглазного давления, мидриаз, повышение агрегации тромбоцитов, снижение синтеза стероидных гормонов. Гипергликемия является следствием прямого угнетения выработки инсулина бета-клетками островков Лангергаганса поджелудочной железы, степень ее зависит от дозы. Полиурия связана с угнетением выработки антидиуретического гормона и увеличением клубочковой фильтрации (Adams 1). По мнению Pascoe (2009), этот эффект может играть негативную роль у гиповолемичных животных, однако данных об этом пока на достаточно. Рвота является нередким осложнением у собак и особенно у кошек, которое наблюдается как правило после внутримышечного введения альфа2-агониста (Vainio, 1989; Haskins et al., 1986;). У собак через несколько часов после применения ксилазина может развиваться острое расширение желудка, особенно склонны к этому некоторые породы, среди которых бассет, немецкий дог и сеттеры. Повышенное скопление газов в желудке и кишечнике может мешать интерпретации результатов различных диагностических исследований (Adams, 2001).

Альфа2-адреноагонисты применяются как в качестве самостоятельных препаратов для обеспечения седации и анальгезии, так и в комбинации с другими препаратами для премедикации, индукции и/или поддержания анестезии. При системном использовании препараты вводят в/в болюсно или в виде постоянной инфузии. Постоянная в/в инфузия альфа2-агонистов в очень малых дозах может использоваться для обеспечения длительной седации, анальгезии и анксиолитического эффекта. У кошек однократная в/м инъекция медетомидина в дозе 80 мкг/кг или дексмедетомидина 40 мкг/кг позволяет выполнить такие малоинвазивные процедуры как рентгенография, лучевая терапия, вскрытие абсцесса, стрижку и т.п.; это же исследование продемонстрировало, что при использовании в монорежиме даже в высоких дозах альфа2-агонисты не подходят для выполнения более инвазивных манипуляций, таких, например, как кастрация, ларингоскопия или даже чистка зубов (Granholm, 2006). Kuo et al. (2004), показали, что добавление буторфанола или гидроморфона к медетомидину позволяет повысить степень анальгезии и уровень седации без усиления побочных эффектов на сердечно-сосудистую систему у собак. Значительное возрастание седативного эффекта с относительно небольшими изменениями со стороны сердечно-сосудистой системы также было продемонстпировано при совместном введении минимальных доз медетомидина (1 мкг/кг) с буторфанолом (0,1 мг/кг) (Girar et al., 2010). Ультра-малые дозы высокоселективных альфа2-агонистов можно использовать для послеоперационного обезболивания в комбинации с опиоидами, а также для снятия возбуждения и дисфории у собак и кошек (Lemke, 2004). Снижение минимальной альвеолярной концентрации изофлюрана на 18 % и на 59 % было продемонстпировано при инфузии дексмедетомидина в дозах 0,5 мкг/кг/ч и 3 мкг/кг/ч, соответственно (Pascoe et al., 2006). Во время анестезии изофлюраном у собак на фоне инфузии дексмедетомидина кардиореспираторные эффекты дексмедетомидина выражены в меньшей степени, чем при анестезии пропофолом (Lin, 2008). Анестезия на основе альфа2-агониста с кетамином характеризуется быстрой и как правило спокойной индукцией, хорошей миорелаксацией и анальгезией, позволяющей проводить высокоинвазивные манипуляции. Рядом исследований было показано, что кетамин частично нивелирует брадикардию и ЭКГ-изменения, возникающие в результате действия альфа2-агонистов у собак (Haskins et al., 1986; Moens and Fargetton (1990), дозозависимо снижает вероятность возникновения рвоты при введении альфа2-адреноагонистов у кошек (Verstegen et al., 1990). Это же исследование подтвердило полученные ранее данные об усилении дыхательной депрессии с увеличением дозы кетамина на фоне альфа2-агонистов.

При эпидуральном и субарахноидальном введении альфа2-агонистов развивается анальгезия, опосредованная активацией пресинаптических и постсинаптических альфа2-адренорецепторов расположенных в дорсальных рогах спинного мозга. По данным Campagnol et al. (2007), эпидуральное введение дексмедетомидина собакам дает дополнительный анальгетический эффект, в результате чего снижается минимальная альвеолярная концентрация изофлюрана. Rector et al. (1997), показали, что эпидуральное введение ксилазина собакам в большей степени снижает ответ на соматическую болевую стимуляцию, чем ответ на висцеральную стимуляцию. Однако зачастую при эпидуральном введении альфа2-агонистов наблюдаются те же негативные кардио-респираторные эффекты, что и при системном введении. Vesal et al. (1996), показали что у собак, послеоперационная анальгезия после эпидурального введения медетомидина сравнима с таковой после эпидурального введения оксиморфона, но сопровождается брадикардией, у некоторых животных наблюдается атрио-вентрикулярная блокада 2 степени. В другом исследовании у собак добавление медетомидина к морфину лишь незначительно улучшало качество эпидуральной анальгезии после операций в области коленного сустава по сравнению с одним морфином (Pacharinsak, 2003). Таким образом, место альфа2-агонистов в качестве препаратов для эпидуральной/субарахноидальной анестезии/анальгезии пока еще не определено.

Продолжительность действия различных альфа2-агонистов варьирует, тем не менее все они оказывают довольно длительный эффект. Однако, действие альфа2-агонистов может быть прекращено введением специфических антагонистов альфа2-адренорецепторов, таких как атипамезол и йохимбин, которые приводят к быстрой реверсии кардио-респираторных эффектов, однако они также устраняют седацию и анальгезию. Йохимбин является менее избирательным и менее специфичным альфа2-антагонистом и его применение часто вызывает возбуждение, поэтому применение более избирательного и высокоспецифичного атипамезола считается предпочтительным (Lammintausta, 1991). Возможно, что скоро в клинической практике появятся альфа2-антагонисты нового поколения, не проникающие через ГЭБ и оказывающие только периферическое действие. Недавнее исследование продемонстрировало, что эти препараты способны уменьшать негативное влияние дексмедетомидина на сердечно-сосудистую систему, не оказывая значительного влияния на уровень седации (Honkavaara et al., 2009).

Согласно инструкциям к препаратам относящимся к группе альфа2-адреноагонистов, применение их у животных с заболеваниями сердечно-сосудистой системы противопоказано. Это однако не согласуется с тем, что в гуманной медицине эти препараты исследовались именно на кардиологических больных. У людей активно велось изучение трех препаратов – клонидина, мивазерола и дексмедетомидина. Основное внимание уделялось кардиопротекторным свойствам альфа2-агонистов. Так, несколько исследований показали, что пациенты, принимавшие в предоперационном периоде клонидин, реже подвергались ишемии миокарда. Другое исследование, в котором пациенты продолжали получать препарат во время операции и в течение нескольких дней после, 30-дневная и 2-летняя выживаемость в группе клонидина была выше по сравнению с плацебо. Ряд исследований показал, что периоперационная инфузия мевазерола у пациентов ИБС не только снижает частоту возникновение ишемии миокарда, но и уменьшает количество осложнений и улучшает исход в послеоперационном периоде. Инфузия дексмедетомидина во время хирургического вмешательства помогает избежать эпизодов тахикардии и повышения АД, но при этом как правило увеличивается объем инфузии и количество вазопрессоров (Fleisher, 2009). В связи с неоднозначностью действия альфа2-агонистов считается, что они не должны применяться (или применяться с осторожностью) у животных с серьезными системными заболеваниями. Возможно, что с появлением новых научных данных эта позиция будет пересмотрена.

БИБЛИОГРАФИЯ

1. Adams H.R. Veterinary pharmacology and therapeutics. 8th edition. Blackwell Publishing Professional, p.313-424, 2001

2. Benson G.J., Thurmon J.C., Tranquilli W.J., Smith C.W. Cardiopulmonary effects of an intravenous infusion of guaifenesin, ketamine, and xylazine in dogs. Am J Vet Res, Vol 46, No. 9, September 1985

3. Campagnol D., Teixeira N., Giordano T., et al. Effects of epidural administration of dexmedetomidine on the minimum alveolar concentration of isoflurane in dogs. Am J Vet Res 2007; 68 (12):1308-1318.

4. Carter J.E., Campbell N.B., Posner L.P., Swanson C. The hemodynamic effects of medetomidine continuous rate infusions in the dog. Vet Anaest Analg, Vol 37, Issue 3, p.197–206, May 2010

5. Fleisher L.A. Evidence-Based Practice of Anesthesiology, 2nd Edition. Elsevier Health Sciences, p.240-243, 2009

6. GirardN.M., Leece E.A., Cardwell J.M., Adams V.J., Brearley J.C. The sedative effects of low-dose medetomidine and butorphanol alone and in combination intravenously in dogs. Vet Anaest Analg, Vol 37, Issue 1, p. 1–6, January 2010

7. Granholm M., McKusick B.C., Westerholm F.C., Aspegrén J.C. Evaluation of the clinical efficacy and safety of dexmedetomidine or medetomidine in cats and their reversal with atipamezole. Vet Anaest Analg, Vol 33, 214–223, 2006

8. Greene S.A., Keegan R.D., Weil A.B. Cardiovascular effects after epidural injection of xylazine in isoflurane-anesthetized dogs. Vet Surg. 24(3):283-9, May-Jun 1995

9. Hammond R.A., G.C.W. England. The effect of medetomidine premedication upon propofol induction and infusion anaesthesia in the dog. Vet Anaest Analg, Vol 21, Issue 1, p.24–28, July 1994

10. Haskins S.C., Patz J.D., Farver T.B. Xylazine and xylazine-ketamine in dogs. Am J Vet Res, Vol 47, No. 3, March 1986

11. Honkavaara J.M., Raekallio M.R., Kuusela E.D., Hyvärinen E.A., Vainio O.M. The effects of L-659,066, a peripheral a2-adrenoceptor antagonist, on dexmedetomidine-induced sedation and bradycardia in dogs. Vet Anaest Analg, Vol 35, 409–413, 2008

12. Kästner S.B.R. A2-agonists in sheep: a review. Vet Anaest Analg, Vol 33, 79–96, 2006

13. Kuusela E., Raekallio M., Anttila M., Falck I., Molsa S., Vainio O. Clinical effects and pharmacokinetics of medetoidine and its enantiomers in dogs. J Vet Pharmacol Therap. 23, 15-20, 2000

14. Lammintausta R. The alpha-2 adrenergic drugs in veterinary anaesthesia. Vet Anaest Analg, Vol 18, Issue Supplement s1, p. 3–8, August 1991

15. Lamont L.A., Bulmer B.J., Grimm K.A., Tranquilli W.J., Sisson D.D. Cardiopulmonary evaluation of the use of medetomidine gydrochloride in cats. Am J Vet Res. 62, 1745-1749, 2001

16. Lamont L.A., Bulmer B.J., Sisson D.D., Grimm K.A., Tranquilli W.J. Doppler echocardiographic effects of medetomidine on dynamic left ventricular outflow tract obstruction in cats. J Am Vet Med Assoc. 1;221(9):1276-81, Nov 2002

17. Lemke K.A. Perioperative use of selective alpha-2 agonists and antagonists in small animals. Can Vet J. 45(6): 475–480, June 2004

18. Lin G.-Y., Robben J.H., Murrell J.C., Aspegrén J., McKusickà B.C., Hellebrekers L.J. Dexmedetomidine constant rate infusion for 24 hours during and after propofol or isoflurane anaesthesia in dogs. Vet Anaest Analg , Vol 35, 141–153, 2008

19. Mizobe T., Maze M. a2-Adrenoceptor agonists and anesthesia. International Anesthesiology Clinics: — Vol 33 — Issue 1 — ppg 81-102, Winter 1995

20. Moens Y., Fargetton X. A comparative study of medetomidine/ketamine and xylazine/ketamine anaesthesia in dogs. Vet Rec, 127 (December 8), 567-571, 1990

21. Pacharinsak C., Greene S.A., Keegan R.D., et al. Postoperative analgesia in dogs receiving epidural morphine plus medetomidine. J Vet Pharmacol Ther. 26(1):71-77. 2003

22. Pascoe P.J., Raekallio M., Kuusela E., McKusick B., Granholm M. Changes in the minimum alveolar concentration of isoflurane and some cardiopulmonary measurements during three continuous infusion rates of dexmedetomidine in dogs. Vet Anaest Analg, Vol 33, Issue 2, pages 97–103, March 2006

23. Pascoe P.J. Use of opioids and alha-2 agonists in geriatric patients. The proceeding of AVA Spring Meeting, March 2009, Helsinki

24. Pypendop B.H. and Verstegen J.P.. Hemodynamic effects of medetomidin in the dog: a dose titration study. Veterinary Surgery, 27, 612-622, 1998

25. Rector E., Otto K., Kietzmann M., Kramer S., Landwehr S., Hart S., Nolte I. Evaluation of the antinociceptive effect of xylazine after epidural administration in dogs under general anesthesia with isoflurane. Berl Munch Tierarztl Wochenschr. 110(1):15-23, Jan 1997

26. Sabbe M.B., Penning J.P., Ozaki G.T., Yaksh T.L. Spinal and systemic action of the alpha 2 receptor agonist dexmedetomidine in dogs. Antinociception and carbon dioxide response. Anesthesiology. 80(5):1057-72, May 1994

27. Verstegen J., Fargetton X., Donnay I., Ectors F. Comparison of the clinical utility of medetomidine/ketamine and xylazine/ketamine combinations for the ovariectomy of cats. Vet Rec 127, 424-426, 1990

28. Vesal N., Cribb P.H., Frketic M. Postoperative analgesic and cardiopulmonary effects in dogs of oxymorphone administered epidurally and intramuscularly, and medetomidine administered epidurally: a comparative clinical study. Vet Surg. 25(4):361-369, 1996

29. Virtanen R. Pharmacological profiles of medetomidine and its antagonist, atipamezole. Acta Vet Scand Suppl. 85:29-37. 1989

Summery:

The general characteristic of alpha2-adrenergic drugs used in veterinary anaesthesia

Alpha2-adrenergic agonists, such as xylazine, medetomidine and other are widely used in veterinary anaesthesia because of their anxiolytic, sedative and antinociceptive properties. They are used alone as sedative/analgesic agents, combined with other anaesthetic agents, or administered as constant rate infusions. Although, use of alpha2-agonists seems to be very beneficial, they have adverse dose-dependent cardiovascular  effects, which include increased systemic vascular resistance, bradycardia, decreased cardiac autput, hyper- and hypotention. On the other hand, the most selective alpha2-adrenoagonist, dexmedetomidine, is exploit  in human patients for sedation in the intensive care unit and perioperatively with rare adverse effects. Dexmedetomidine is available for small animals now, but there are still a lot of questions concerning the safe administration of alpha2-agonists in veterinary practice. In the present review we are trying to summarise the old knowledge and the results of latest studies of alhpa2-agonists, in order to optimise the exploitation of these drugs.